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1. Introduction

Expected utility theory is the cornerstone of most applied work
in economics and finance.Many interesting applications of the the-
ory entail working with an unbounded utility on an unbounded
domain, together with a rich class of probability distributions. For
example, in financial economics, it is customary to posit an expo-
nential (von Neumann–Morgenstern) utility function over mone-
tary prizes of the form u (x) = − exp (−λx) for some λ > 0 and
normal probability distributions over asset returns. In general, one
should be cautious in such situations to make sure that expected
utility is well defined. This point is nicely illustrated in the famous
St. Petersburg paradox; suppose the utility function over prizes u
is unbounded from above. Then, for any natural number n, we can
find xn such that u (xn) > 2n. Consider such a sequence (xn) and
a probability distribution that yields the prize xn with probability
1/2n. The expected utility of this probability distribution is +∞,
which violates the continuity assumption of expected utility. (A
similar argument shows that utility functions that are unbounded
below are incompatible with any set of lotteries containing all lot-
teries with countable support.)

A customary way to avoid this problem is to make one of the
following choices:

• Restrict attention to simple probability measures, i.e., those
with finite support, and allow for unbounded utility that could
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be discontinuous (or even non-measurable), but still obtain an
expectation; or

• Consider all probability measures over R and strengthen the
notion of continuity, but restrict attention to utility functions
that are continuous and bounded.

But as Kreps (1988, p. 67) points out (also see Kreps, 2012,
p. 100), each of these choices is somewhat ‘disappointing’, in that
they embody drastic tradeoffs. While the first option is very per-
missive with respect to the utility functions allowed, it rules out
probabilitymeasureswith infinite support (such as the normal dis-
tribution overR). Similarly, the second option permits all probabil-
ity measures, but it rules out unbounded utility functions, such as
CARA utility. As exponential utility and a normal distribution of re-
turns is a parametrization that is analytically convenient, it would
be desirable to find conditions under which this specification, as
well as many other, can be accommodated within the expected
utility framework. In particular, this means that in order to work
with some class of unbounded utility functions, one must identify
both the appropriate class of probability measures to look at and
the appropriate topology on the space of these measures.

A more satisfactory solution is provided by Föllmer and Schied
(2011, Theorem 2.9) (henceforth FS). They show that the natural
space to look at is the space of functions that satisfy a growth condi-
tion and that the corresponding domain of probability measures is
all probabilitymeasures that have finite integralwith respect to the
function governing this growth condition. They then provide a rep-
resentation with continuous and unbounded utility (but bounded
relative to the growth condition). Their proof is essentially ‘from
scratch’ in the sense that they prove their theorem from first prin-
ciples and is along the lines hinted at by Kreps (2012, p. 100).

In this paper we provide a much simpler proof of FS’s result.
We exhibit an isometry – details are in Section 2 – between pairs
of spaces that allows us to reduce the problem to that of exhibiting
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continuous and bounded utility. Thus, with a simple isometry and
a little linear algebra, we can obtain a representation with contin-
uous and unbounded utility.

We note that our proof is, in contrast with the proof of FS,
virtually free of calculations. Instead, it leverages the proof of the
standard case with bounded utility—see Section 3. In addition to
providing a utility representation,we also discuss a preorder on the
space of all growth conditions and show that with more stringent
growth conditions, fewer probability measures are admissible for
analysis.

We provide simple examples with various growth conditions.
The examples also emphasise the price of allowing unbounded
utility: we can no longer consider all probability measures on the
domain, and the condition for the convergence of probability mea-
sures is correspondingly more stringent.

Before we proceed, it is worthwhile to consider the value of
our Theorem 3.1. For instance, it may be argued that in most ap-
plied models, if the modeller is considering an unbounded util-
ity function, then he simply considers a particular set of lotteries
with finite expected utility (calculated using the utility function in
question). While this is undoubtedly true, our approach provides a
straightforward way to delineate all lotteries with finite expected
utility. Butmore importantly, our approachmakes clear the natural
topology on this space of admissible lotteries. This latter observa-
tion is important because it is central to the analysis of counterfac-
tuals where, for instance, alternative lotteries may be considered
that may even be perturbations of the given lottery. Such analysis
is feasible only if one understands the topology on the space of ad-
missible lotteries. Put somewhat differently, this last observation
implies that in applied models, topologies on the space of (admis-
sible) probability measures should be determined in conjunction
with the space of (unbounded) utilities in question.

We note that the topology on the space of admissible lotteries
is finer than the topology of weak convergence. It is easy to see
that such a property is necessary. If not, we could approximate any
lottery with simple lotteries in the topology of weak convergence,
which would violate the continuity of preferences.

2. Setting and preliminaries

First we introduce some notation. Let X be a separable metric
space, C(X) be the space of continuous functions on X , and Cb(X)
be the space of bounded, continuous functions on X . Similarly,
M (X) is the space of finite (Borel) measures on X, M +(X) is the
positive orthant of M (X) (i.e., the space of positive measures), and
P(X) is the space of probability measures on X . We will endow
M (X)with theweak* topology, via the dual pairing ⟨M (X), Cb(X)⟩.
Convergence in this topology is denoted by w∗.

Let F :=

g ∈ [1, ∞)X : g ∈ C(X)


be the set of all continuous

and positive functions that are bounded away from zero (in partic-
ular, for g ∈ F , infx∈X g(x) > 1), with typical members f , g . This
will be the set of weight functions.

For the rest of the paper, we use the following notational con-
ventions. For a function f ∈ RX and measure µ on X , the integral
X f (x)µ(dx) is denoted by µf . Similarly, for g ∈ F , the measure

ν(dx) := g(x)µ(dx) is written as gµ.
Let g ∈ F and defineWg(X) to be the space of continuous func-

tions u ∈ C(X) such that supx∈X |u| /g(x) < ∞. It is easy to see that
Wg(X) is a linear space. In fact, we canmakeWg(X) a normed space,
by defining ∥u∥g,∞ := supx∈X |u| /g(x), which is easily seen to be
a norm. Clearly, u ∈ Wg(X) if, and only if, ∥u∥g,∞ < ∞. (As we
shall see below, Wg(X) equipped with the norm ∥·∥g,∞ is, in fact,
a Banach space.) Intuitively,Wg(X) consists of all functions that do
not grow faster than g; this is why g is also said to imply a growth
condition.

Let Mg(X) := {µ ∈ M (X) : µg < ∞} be the space of mea-
sures on X whose g-integral is finite. Then, M +

g (X) is the positive
orthant of Mg(X), and Pg(X) is the space of probability measures
on X that have finite g-expectation. If we choose g to be a con-
stant function, say g = 1, then P1(X) = P(X). Notice that Pg(X)
may be a strict subset ofP(X)when g is not constant. For instance,
when X = R, g = max[1, |x|] implies that Pg(R) does not contain
any probability measure with infinite expectation (like the Cauchy
distribution). Notice also that for any g ∈ F , Pg(X) is a convex set
(and hence a mixture space). To see this, let µ1, µ2 ∈ Pg(X), and
let t ∈ (0, 1). Then, 0 6


g d


tµ1+(1−t)µ2


(x) = t


g dµ1(x)+

(1 − t)

g dµ2(x) < ∞ because both µ1 and µ2 have finite g ex-

pectation by virtue of being in Pg(X).
Recall that ban(X) the space of finite normal charges on X (en-

dowed with the Borel σ -algebra) is the dual of Cb(X). Our first re-
sult describes the dual space ofWg(X).

Proposition 2.1. The operator T : Wg(X) → Cb(X) defined as Tu :=

u/g is a bijective isometry. Therefore, the norm dual of the space
Wg(X) is isometrically isomorphic to the space of all normal bounded
charges µ on X such that µg is finite.
Proof. Consider the map T : Wg(X) → Cb(X) given by Tu := u/g .
It is easy to see the following: (i) T is an isometry, (ii) T is invertible,
and (iii) T is linear. Thus, T is an operator and is a bijective isome-
try. This implies the adjoint of T , namely T ∗

: ban(X) → Wg(X)∗,
is a bijective isometry. It is also easy to see that if p ∈ ban(X),
T ∗p(dx) = p(dx)/g(x).

Finally, to see that Wg(X)∗ is the space of all normal, bounded
charges µ on X with µg finite, let us first assume that µg is not
finite (where we assume, without loss of generality, that µ is posi-
tive). This implies gµ ∉ ban(X), which implies thatµ is not the im-
age of any element of ban(X), and hence not a member of Wg(X)∗.
Conversely, let us assume that µg is finite, so gµ ∈ ban(X). Then,
T ∗(gµ) = µ ∈ Wg(X)∗. �

It follows from the definition of T ∗ that T ∗M (X) = Mg(X) and
T ∗M +(X) = M +

g (X). Therefore, we will endow Mg(X) with the
weak* topology, via the duality


Mg(X),Wg(X)


and convergence

in this topology will be denoted by w∗
g . By the definition of T , for

any net (µα) in M +
g (X), µα →w∗

g µ if, and only if, µα/g →w∗ µ/g .
Notice also that if u ∈ Wg(X), then |u(x)| 6 ∥u∥g,∞ g(x), so that
for all µ ∈ Pg(X), we have µ |u| 6 ∥u∥g,∞ µg < ∞.

We define the binary relation on D on F as follows: for, g, h ∈

F , g D h if g ∈ Wh(X). Note that D is reflexive and transitive, but
not antisymmetric. Hence D is a preorder. Intuitively, g D h if h
grows faster than g .

Corollary 2.2. Let g D h. Then, u ∈ Wg(X) implies u ∈ Wh(X) and
µ ∈ Ph(X) implies µ ∈ Pg(X).
Proof. By assumption g D h, so g ∈ Wh(X). Suppose now that
u ∈ Wg(X), so that

sup
x∈X

|u(x)| /h(x) = sup
x∈X


|u(x)|
g(x)

g(x)
h(x)


6


sup
x∈X

|u(x)| /g(x)
 

sup
x∈X

g(x)/h(x)


< ∞.

Suppose now that µ ∈ Ph(X). Then, because g D h, it follows
that there exists c > 0 such that g(x) 6 ch(x) for all x ∈ X . Thus,
g(x) µ(dx) 6 c


h(x) µ(dx) < ∞, from which it follows that

µ ∈ Pg(X). �

Corollary 2.3. Wg(X) = Wh(X) if, and only if, g D h and h D g.
Proof. The ‘if’ part was proved above in Corollary 2.2. To see the
‘only if’, notice that g ∈ Wg(X) for all g ∈ F , so that if Wg(X) =

Wh(X), then g ∈ Wh(X) and h ∈ Wg(X). But this implies g D h and
h D g , as required. �

Corollary 2.4. If µ ∉ Pg(X), then µg = ∞.
Proof. If µ is a probability measure on P(X) such that for all u ∈

Wg(X)we haveµ |u| < ∞, then setting u = g impliesµ ∈ Pg(X),
which establishes the contrapositive. �
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3. Representation

We shall rely on the following result which is essentially a re-
statement of the standard expected utility theorem for bounded
continuous utility—see, for instance, Theorem 3 of Grandmont
(1972) or Theorem 5.21 and Corollary 5.22 of Kreps (1988).

Theorem 3.0. Let Û : M +(X) → R be linear and w∗-continuous.
Then, there exists û ∈ Cb(X) such that Û(p) =


X û(x)p(dx) for all

p ∈ M +(X).
Weare now ready to state ourmain theorem (which is Theorem

2.9 of FS).

Theorem 3.1. Let %⊂ Pg(X) × Pg(X) be a binary relation. Then, %
is a preference relation (i.e., is complete and transitive) that is w∗

g -
continuous and satisfies independence if, and only if, there exists a
function u ∈ Wg(X) such that for all µ, ν ∈ Pg(X), µ % ν if, and
only if, µu > νu. Moreover, u is unique up to positive affine transfor-
mation.
Proof. Notice that the uniqueness of the function u follows from
the Mixture Space Theorem. Therefore, it suffices to establish
existence.

By the Mixture Space Theorem, there exists U0 : Pg(X) → R
that represents %, and is linear andw∗

g -continuous. Let U : M +
g (X)

→ R denote the (unique) extension of U0 to M +
g (X) by linearity.

Notice that U is w∗
g -continuous.

Now define Û : M +(X) → R as follows: Û := U ◦ T ∗, so
Û(p) = U(p/g) where p ∈ M +(X) and T ∗ is as in Proposition 2.1.
The function Û is linear and continuous (because it is a composi-
tion of linear and continuous functions). By Theorem 3.0, there ex-
ists û ∈ Cb(X) such that Û(p) =


X û(x)p(dx). In other words, for

each µ ∈ M +
g (X), we have U(µ) = Û(gµ) =


X û(x)g(x)µ(dx) =

X u(x)µ(dx), where u(x) := û(x)g(x) ∈ Wg(X). Therefore, for all
µ, ν ∈ Pg(X), µ % ν if, and only if, µu > νu, which proves the
theorem. �

4. Examples

Example 4.1 (Risk Neutral Agents). LetX := R and g1(x) := max[1,
|x|]. Notice that u(x) = x is now in Wg1(R). In other words, all
risk neutral expected utility functions are in Wg1(R). Therefore, if
µ ∈ Pg1(X), then µ has finite mean. In fact, if µ ∈ P(X) has finite
mean, then µ ∈ Pg1(X). This follows immediately from the obser-
vation that µg1 6


[−1,1] 1 · µ +


R\[−1,1] |x| µ 6 µ([−1, 1]) +

µ |x| < ∞.
It is useful to note that the lottery with the Cauchy distribu-

tion, which does not have amean, is not inPg1 given our particular
choice of g1. Note also that exponential utilities (CARA) are not in
Wg1(R). N

Next consider the case of CARA utilities.

Example 4.2. LetX := R and g2(x) := exp(α |x|)whereα > 0.We
claim that the utility function u(x) = − exp(−βx) is inWg2(R) for
β ∈ (0, α). To see this, notice that

|u(x)|
g2(x)

= e−βx−α|x|
=


e−x(α+β) if x > 0
ex(α−β) if x 6 0.

Therefore, u ∈ Wg2(R) if, and only if, α > β . In other words, all
CARA utility functions with Arrow–Pratt risk aversion parameter
β are in Wg2(R) if, and only if, β 6 α.

In addition, all the normal distributions are in Pg2(R). To see
this, letµ be the lottery withmean 0 and variance σ 2. Then,µg2 ∝

∞

0 exp(αx) exp(−x2/2σ 2) dx. But
∞

0
eαx−x2/2σ 2

dx = eα2σ 2/2


∞

0
e−

1
2σ2 (x−ασ 2)2 dx
and the latter is finite, so µ ∈ Pg2(R). It is easy to see that consid-
ering normal distributions with zero mean is without loss of gen-
erality.

Finally, notice that the lottery on R− with exponential distribu-
tion F(x) = min[1, exp(βx)], which has mean −1/β , is in Pg2(R)
if, and only if, i.e., if, and only if, the mean is sufficiently large. This
is because


R g2(x) dF(x) =

 0
−∞

exp((β − α)x) dx, which is finite
if, and only if, β > α. N

A drawback of the weight function g2(x) = exp(α |x|) is that it
rules out exponential lotteries with high mean that are supported
on R+. We can rectify this by picking a different weight function.

Example 4.3. Let X := R and g3(x) := max[exp(−αx), x] where
α > 0. Once again, the utility function u(x) = − exp(−βx) is in
Wg3(R) if, and only if, α > β . In other words, all CARA utility func-
tions with Arrow–Pratt risk aversion parameter β are inWg3(R) if,
and only if, β 6 α. As before, all the normal distributions are also
in Pg3(R). Moreover, all risk neutral utilities are inWg3(R).

Moreover lotteries with distribution F(x) := 1 − exp(−γ x),
where x > 0, which have mean 1/γ , are all in Pg3(R). N

The examples above illustrate Corollary 2.2 because g3 D g2
and there exist probability measures that are in Wg3(R) but not
in Wg2(R). A drawback to Examples 4.2 and 4.3 is that due to our
choice of theweight functions g2 and g3,Wg2(R) andWg3(R)donot
contain all CARA utility functions even though Pg2(R) and Pg3(R)
contain all the normal distributions. This is because the weight
function g2(x) := exp(α |x|) where α > 0 does not grow suffi-
ciently quickly to ensure that every CARA utility is in Wg2(R). We
now consider a weight function that allows for all CARA utilities.

Example 4.4. Let X := R and let g4(x) := max

exp


exp(−x)


.

We can now ensure that every CARA utility function is in Wg4(X).
To see this, consider the CARA utility function − exp(−αx), and
notice that limx→−∞


exp(−αx)/ exp[e−x

]


= 0, from which it
follows immediately that − exp(−αx) ∈ Wg4(R). However, the
lottery with normal distribution (mean r , variance σ 2) is not in
Pg4(R), because ex grows faster than x2. N

This suggests that we should look for a weight function that
grows faster than any linear function but that does not grow faster
than x2.

Example 4.5. Let X := R and let

g5(x) :=


exp


(−x)1+t x < 0

e x > 0

where t ∈ (0, 1). Let u(x) = − exp(−βx) be a CARA utility func-
tion where β > 0. To prove that supx∈X |u(x)| /g5(x) < ∞, it suf-
fices to show that limx→−∞ exp


−βx − (−x)1+t


< ∞. Notice

that limx→−∞ −βx − (−x)1+t
= limx→−∞(−x)


β − (−x)t


=

−∞ fromwhich it follows immediately that limx→−∞ exp

−βx−

(−x)1+t


= 0 < ∞. Thus, every CARA utility function is inWg5(R).
We shall now show that every normal distribution is in Pg5(R).

Consider a normal distribution with mean r and variance σ 2.
Such a distribution is in Pg5(R) if, and only if,


R g5(x) exp


(x −

r)2/2σ 2

dx is finite. Observe that this expectation is finite if, and

only if,
 0
−∞

exp

(−x)1+t


exp


(x − r)2/2σ 2


dx is finite or equiv-

alently, if


∞

0 exp(x1+t) exp

(x − r)2/2σ 2


dx is finite. The func-

tion x1+t
− (x− r)2/2σ 2 is decreasing on the set [y∗, ∞) for some

sufficiently large y∗ > 0, so to show that


∞

0 exp(x1+t) exp

(x −

r)2/2σ 2

dx is finite, it suffices to show that


∞

y∗ exp(x1+t) exp

(x−

r)2/2σ 2

dx is finite.

We have just established that exp

(x − r)2/2σ 2


is decreasing

on the set [y∗, ∞). It is also positive and continuous. Therefore,
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
∞

y∗ exp(x1+t) exp

(x − r)2/2σ 2


dx is finite if, and only if,


∞

n>y∗

exp(n1+t) exp

(n − r)2/2σ 2


is finite—this is the integral test for

the convergence of a series. This series converges if, and only if,
lim n → ∞ |an+1/an| < 1 (the ratio test), where an := exp(n1+t)
exp


(n − r)2/2σ 2


.

The ratio an+1/an = exp

(n+1)1+t

−n1+t
−1/2σ 2

−(n−r)/σ 2

.

Therefore, it suffices to consider the limit of the exponent. Notice
that x1+t is a convex function because t > 0, so (n+1)1+t

−n1+t 6
(1 + t)(n + 1)t . Therefore,

(n + 1)1+t
− n1+t

− 1/2σ 2
− (n − r)/σ 2

6 (1 + t)(n + 1)t − 1/2σ 2
− (n − r)/σ 2

= (1 + t)(n + 1)t − (n + 1)/σ 2
− 1/2σ 2

+ (1 + r)/σ 2

= (n + 1)t

(1 + t) − (n + 1)1−t/σ 2

− 1/2σ 2
+ (1 + r)/σ 2

and limn→∞(n + 1)t

(1 + t) − (n + 1)1−t/σ 2


= −∞, which

establishes that limn→∞ an+1/an = 0. This proves the claim that
every lottery with normal distribution and parameters (r, σ 2) is in
Pg5(R). N

A utility function displays infinite (absolute) risk aversion if it is
more risk averse than every CARA utility function at every wealth
level. Notice that the utility function u(x) = −g5(x) (which is in-
creasing and concave), where g5 is defined in Example 4.5, does not
exhibit infinite risk aversion. Nevertheless, every CARA utility is in
Pg5(R). This is because the weight function g5 has the following
property: for every β > 0, there is a wealth level xβ < 0 such that
at this wealth level, the (Arrow–Pratt) risk aversion of u = −g5 is
greater than β .

We end this section with a counterexample to a claim of Huang
and Litzenberger (1988, p. 14). They claim that if the utility func-
tion is concave, then ‘. . . expected utilities of [lotteries] having finite
expectations will be finite even when [the utility function] is un-
bounded.’

Example 4.6. Consider the CARA utility function u : R → R given
by u(x) = −e−x. Let µ be the lottery that is exponentially dis-
tributed onR−. Then, the expected value of the lottery (itsmean) is 0
∞

xex dx = [xex]0
−∞

−
 0
−∞

ex dx = 0−0−1 = −1. The expected

utility of µ is

u(x)µ(dx) =

 0
−∞

−e−xex dx = −
 0
−∞

dx =

−∞. N

Huang and Litzenberger’s claim is true (for the utility func-
tion above) if we restrict attention to lotteries whose support is
bounded below; this follows from Jensen’s inequality. More gen-
erally, the claim is true if the utility function restricted to the sup-
port of the probability measure in question is bounded below.
Example 4.6 considers a lottery whose support is unbounded be-
low.

5. Related literature

The question addressed in this paper is well known and has
been analysed from various perspectives. In this section, we will
place our approach in context.

The expected utility rule was axiomatised by von Neumann and
Morgenstern (1944)who considered the special casewhere the set
of probability measures under consideration is P0(X), the space of
simple probability measures on X .1 It is well known – for instance,
from the St. Petersburg paradox described in the Section 1 – that

1 A generalisation of von Neumann and Morgenstern’s theorem is provided by
Herstein and Milnor (1953), who provide necessary and sufficient conditions for
the existence of a linear representation – for instance, a function V : P(X) → R
such that p % q if, and only if, V (p) > V (q) – on a mixture space, which generalises
the notion of a convex set.
the expected utility rule is incompatible with lotteries that have
unbounded support. A specific axiomatisation of expected utility
that allows for all discrete probability measures is Blackwell and
Girshick (1954), who note that the resulting vN–M utility function
over prizes must necessarily be bounded.

Further axiomatic developments include Ledyard (1971), De-
Groot (1970), and Fishburn (1975, 1976). These are significant
because they derive an expected utility representation while al-
lowing for unbounded (vN–M) utility. Clearly, this means that the
domain of probability measures must somehow be restricted. We
now provide a brief description of their respective constructions.
Let P denote some convex subset of P(X) such that P contains
P0(X). Ledyard and DeGroot first consider the spacePb(X), which
consists of probability measures with bounded support, whence
the probability of the set {x : x1 % x % x2} is 1 for some x1, x2 ∈ X .
(Here, x1 % x if, and only if, δx1 % δx, where δx is the degener-
ate lottery (Dirac measure at x) that gives x with probability one.)
Standard techniques allow them to find an expected utility repre-
sentation on this domain, and the resulting utility u ∈ RX need not
be bounded. They then extend the representation to the space of
all unbounded probability measures that have finite u expectation.

In contrast, Fishburn (1975) considers some fixed convex sub-
set P of P(X) that contains P0(X) and directly imposes conditions
on the preference that ensures the existence of an expected util-
ity representation.2 For simplicity, let us consider the case where
X = R, and % restricted to X is (weakly) monotone, i.e., preference
over outcomes is monotone. Fishburn (1975) notes that if % is a
preference on P and satisfies the usual vN–M axioms, then it has a
linear representation, V . Wemay define the utility function u ∈ RX

as u(x) := V (δx) for all x ∈ X . In that case, on the subdomainP0(X)
of simple probability measures, V (p) > V (q) if, and only if,


x

u(x)p(x) >


x u(x)q(x), where p, q ∈ P0(X). He then shows (The-
orem 1) that if % satisfies an additional dominance axiom, then for
all p ∈ P with supports that are unbounded above but bounded be-
low, it must necessarily be the case that V (p) >


u(x) dp(x). Fish-

burn further introduces another axiom (Axiom 5′) which requires
that the upper truncation of p is well behaved. Formally, Axiom 5′

from Fishburn (1975) requires that if p has supported unbounded
above but bounded below, and if p0 ∈ P0(X) is such that p ≻ p0,
then there is some upper truncation of p that is at least as good
as p0. Clearly, this implies that V (p) 6


u(x) dp(x), which proves

that V (p) =

u(x) dp(x). Intuitively, the axiom ensures that u is

such that u decreases sufficiently quickly so as to ensure that the
expected utility is well defined.

There are two main differences between the present work and
that of Ledyard (1971), DeGroot (1970), and Fishburn (1975). The
first is that these works make no use of the topological structure
(except for Fishburn (1975) who requires some mild connectiv-
ity assumption) of the prize space. This means that these papers
must necessarily be silent about the continuity of the vN–M utility
u, even in the case where the prize space X = R. In contrast, our
approach immediately delivers a continuous vN–Mutility function
while only requiring that the prize space X be a separable metric
space.

The second difference is that the aboveworks implicitly recover
a growth condition on the utility function (via the preference or-
dering on the set P), while we explicitly impose a growth condi-
tion on the space of probabilitymeasures,which immediately leads
to a natural dual space of utilities satisfying a growth condition.
Put differently, the essence of the problem boils down to requir-
ing that (i) the vN–M utility function not grow too quickly, and
(ii) the tail probabilities decrease sufficiently fast. The properties

2 Fishburn (1976) provides a specialisation of Fishburn (1975) for the case where
the set of prizes is X := R+ .
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of the tail probabilities are determined by the set P under consid-
eration. (This is because for any convex set P ⊂ P(X), there exists
a weight function g such that P ⊂ Pg(X) ⊂ P(X).) Thus, the set
P automatically implies a growth condition on tail probabilities. If
expected utilities are to be well defined, then there must be a cor-
responding growth condition on the vN–Mutility function, and the
various approaches discussed above achieve this in different ways.

In contrast, our approach fixes a growth condition (implied by
a weight function) such that relative to this weight function (i′)
the only relevant vN–M utility functions are those that do not
grow faster than the weight function, and (ii′) the only relevant
probability measures are those whose tail probabilities diminish
sufficiently quickly so as to render the weight function integrable.
Thus, conditions placed on the tail probabilities are embodied in
the domain, and a little linear algebra gives us our result, without
additional domination-like conditions.

An advantage of our approach is that it makes immediately
clear the relevant topology on the space of admissible probability
measures. This is important because it makes clear what a pertur-
bation of a probability measure looks like (though Ledyard, 1971
also presents a pseudo-metric on the space of probability mea-
sures),while simultaneously allowing for a perturbation of the util-
ity function in a large class (this is not immediately obvious in
Ledyard). Such perturbations are invaluable to analysts, and our
approach lays bare the connection between the weight function,
the spaces of admissible probability measures and vN–M utility
functions, and the corresponding topologies on these spaces.
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